Bending sensor combining multicore fiber with a mode-selective photonic lantern.
نویسندگان
چکیده
A bending sensor is demonstrated using the combination of a mode-selective photonic lantern (PL) and a multicore fiber. A short section of three-core fiber with strongly coupled cores is used as the bend sensitive element. The supermodes of this fiber are highly sensitive to the refractive index profiles of the cores. Small bend-induced changes result in drastic changes of the supermodes, their excitation, and interference. The multicore fiber is spliced to a few-mode fiber and excites bend dependent amounts of each of the six linearly polarized (LP) modes guided in the few-mode fiber. A mode selective PL is then used to demultiplex the modes of the few-mode fiber. Relative power measurements at the single-mode PL output ports reveal a high sensitivity to bending curvature and differential power distributions according to bending direction, without the need for spectral measurements. High direction sensitivity is demonstrated experimentally as well as in numerical simulations. Relative power shifts of up to 80% have been measured at radii of approximately 20 cm, and good sensitivity was observed with radii as large as 10 m, making this sensing system useful for applications requiring both large and small curvature measurements.
منابع مشابه
All-fiber few-mode multicore photonic lantern mode multiplexer.
The emergence of space division multiplexing (SDM) for ultrahigh capacity networks has heralded pioneering Petabit-class optical transmission systems. In parallel to novel SDM fibers, a new class of components to enable scalable, low-loss schemes for unlocking fiber capacity is being developed. In this work, an all-fiber mode selective photonic lantern mode multiplexer designed for launching in...
متن کاملGas Sensor Based on Large Hollow-Core Photonic Bandgap Fiber
One concern in using photonic band-gap fiber (PBGF) as a gas sensor is the response time. In this type of the gas sensors, response time is the time required for gas to diffuse into the hollow-core. So considering a large hollow-core PBGF (HC-PBGF), the response time can be significantly reduced. But in the large HC-PBGF, the fundamental issue is the presence of higher order modes (HOMs). Somet...
متن کاملFiber Space (De)Multiplexer based on Photonic Lantern
Mode multiplexer/demultiplexer for Space Division Multiplexing (SDM). .................... 2 Photonic Lantern ............................................................................................................... 2 Fiber Photonic Lantern ..................................................................................................... 3 Phoenix Fiber Lanterns ..........................
متن کاملUltrasensitive vector bending sensor based on multicore optical fiber.
In this Letter, we demonstrate a compellingly simple directional bending sensor based on multicore optical fibers (MCF). The device operates in reflection mode and consists of a short segment of a three-core MCF that is fusion spliced at the distal end of a standard single mode optical fiber. The asymmetry of our MCF along with the high sensitivity of the supermodes of the MCF make the small be...
متن کاملEfficient multi-mode to single-mode coupling in a photonic lantern.
We demonstrate the fabrication of a high performance multi-mode (MM) to single-mode (SM) splitter or "photonic lantern", first described by Leon-Saval et al. (2005). Our photonic lantern is a solid all-glass version, and we show experimentally that this device can be used to achieve efficient and reversible coupling between a MM fiber and a number of SM fibers, when perfectly matched launch con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 40 22 شماره
صفحات -
تاریخ انتشار 2015